Japan
近年のIoTデバイスの進歩は、人と機械の協業や、安全のための協働を可能にしています。
製造業に限らず、様々な労働環境において、人、ロボット、あるいは多様な機械が、
時間と空間を共有して活動する際の、安全技術、慣習、標準化に関する報告を集め、課題について議論します。
The talk will briefly present the results of recent scientific studies that should be taken into account when considering human-robot safety. Biomechanical corridors from human subject studies, based on pain thresholds, show human body stiffnesses and limits. They can be used for a safe operation of a power- and force-limited robot.
協働ロボットが多くのモノづくり分野で活用されるようになった。一方で、ワークや治具などの挟まれリスク対策の課題が多く、今後のより実用的な安全、安心の確保、助けあえる手段としての研究・開発が望まれる。本報では自動車製造ラインの協働化事例、サイバーフィジカルシステムを活用した人の身体的な負担感把握事例について話題提供する。今後の人を中心とした協働化、協調化の課題と展望について議論する。
This talk will take a look at current trends in human-robot collaboration with a few examples of recent activities in this field. Finally I will identify and briefly discuss some key trends for the future of the field.
There are many kinds of autonomous ground vehicles and this presentation focuses on autonomous mobile machines and mobile robots. Autonomous mobile machines are applied in outdoors applications and their safety systems rely usually on access control and on-board safety systems. The mobile robots are used often indoors and there are plenty of suitable on-board safety sensors to be applied. Currently one common challenge with both autonomous mobile machines and mobile robots is that there are plenty of different applications and the current requirements are written only to specific cases. The variety of mobile vehicles is increasing.
Robotics have long been used for dirty and dangerous tasks, thereby contributing to reduced risks for workers. With the “new normal” requiring resilience and agility – despite the labour shortage, greater automation is needed. Smaller robots and mobile robots enable the automation of tasks that are dull and injury prone. Often the solution is partial automation to work collaboratively with people. The results are fewer ergonomic strains, sprains and injuries while experiencing increased productivity.
We newly established risk reduction system, named “Safeguarding Supportive System (SSS)”, which is proposing to ISO. It is established to prevent human error and intentional unsafe behavior from mechanical side (hardware side). The SSS would reduce residual risks with appropriate ITC combination. We examined efficacy of the SSS at a rental company of portal workbench. We examined 1) whether RF-tag system was adequately operated by workers, 2) whether UWB-active-RFID system precisely monitored and captured workers movement and location in real time, and 3) whether gateway monitor system appropriately monitored entering into and leaving from the work zone. As results in the present study, there were no differences in relative ratio of correct count, safe failure and dangerous failure in zone A1 and those of B1. Time and trace of movement of workers were recorded by UWB active RFID system. Also, the system could be confirmed of state of the simultaneous works of more than one worker.
少子高齢化に伴い労働力不足が加速し、手作業の生産現場で安全柵なしで自動化できる協働ロボットの需要が急増している。この発表では、安全面含めて、初めてでも簡単に使える協働ロボットの特徴と、適用事例を紹介する。
Presented as a key to competitiveness, collaborative robots are generating a lot of interest in the industry. Many see it as a way to combine human know-how with the endurance of these robots designed to work in proximity to workers. Nevertheless, collaborative robotics raises the question of how to integrate them into companies because of the new human-robot coactivity that it implies. This can lead to physical risks but also to psychological constraints. The conference reminds us of the importance of a global risk prevention approach when putting in place a robotic cell. The consideration of human and technical factors throughout the deployment process ensures a successful integration. The different technical and organizational solutions are addressed. Finally, the conference opens on current and future developments in terms of AI, mobile robotics, etc.
サービスロボットやアシストスーツなど人との協働作業を目的とした機械が登場している。これらの機械は、作業者の行動や動作を期待して効率的な協働作業を実現する。従って、これまでの後付けの安全対策では不十分であり、協働作業内容に安全制御(機能安全)を考慮する本質的安全設計が求められる。さらに、そのリスクや安全対策は、人と機械の関係性によって動的に変化するため、動的リスク管理が前提となる。協働機械の安全性については、ACOSやIEC白書において議論が進んでおり、本発表はその最新状況について解説する。
これまでは、人間の行動は予測できないという認識のもと、予測される事故のイメージや必要な安全対策が議論されてきました(事故防止型安全)。今後、人間とロボットが協働するためには、人間の行動を予測する技術が必要です。つまり、人間のモデリングが重要です。個々の人間を正確にモデリングすることで、AIなどの技術を使って人間の行動を予測することが可能にし、個人を正確にモデル化することで、その人に合った作業支援が安全を維持しながら可能になります。それが生産性の向上につながります。つまり、安全性を向上させることで、個々の人間管理を可能にし、生産性を向上させることができるのです。これは新しい安全概念(Productive Safety)であると言えます。
Currently, when discussing the safety of industrial robots in collaborative work systems, pain is the norm and the protective interval distance is determined. However, as robots coexist in closer proximity to humans to service them, the protective spacing distance alone becomes irrelevant to the discussion. In this presentation, I would like to ask the following question: depending on the frequency of human-machine contact, can the norm of internal bleeding as well as the norm of pain be determined as the upper limit of safety data? This is the position that ISO/TR 21260 is based on.
Due to the difficult challenge of construction and a shortage of labor, we started our development of working robots in 2016. The robots have the ability to work while moving to the next location autonomously. We have designed these robots to be functionally safe and to incorporate risk avoidance. Safety management of robots and workers has also been taken into account.
The implementation of robots began last year. We would like to introduce the feature of the safe and effective robots.